Centro di Referenza Nazionale per le Salmonellosi

Istituto Zooprofilattico Sperimentale delle Venezie

Enter-Vet

Sorveglianza delle salmonellosi in ambito veterinario

Riepilogo annuale 2002

Programma Enter-Vet 2002

Riepilogo annuale

A cura di:

Antonia Ricci Denis Vio Marzia Mancin

Con la collaborazione tecnica di:

Claudio Minorello
Cristina Saccardin
Paola Zavagnin
Letizia Ceglie
Maria Cristina Dalla Pozza

Centro di Referenza Nazionale per le Salmonellosi Viale dell'Università n. 10 35020 Legnaro (PD)

Tel.: 049/8084296 293 Fax: 049/8830268

e-mail: aricci@izsvenezie.it

Responsabile: dott. Stefano Marangon

Elenco dei Laboratori di Riferimento

 Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d'Aosta Via Bologna, 148 10154 Torino

Referente: Dott.ssa Lucia De Castelli

Laboratorio Controllo Alimenti

Tel. 011/2686303 Fax 011/2473450

e-mail: controlloalimenti.decastelli@izs.to.it

2. Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna

Via A. Bianchi, 9 25124 Brescia

Referente: Dott.ssa Silvia Tagliabue

Dipartimento di Diagnostica Specializzata – Reparto di Batteriologia Specializzata

Tel. 030/2290323 Fax 030/2290570

e-mail: battspec@bs.izs.it

3. Istituto Zooprofilattico Sperimentale Umbria e Marche

Via G. Salvemini, 1 06126 Perugia

Referente: : Dott.ssa Stefania Scuota

Laboratorio di Microbiologia degli Alimenti

Tel. 075/343269 Fax 075/35047

e-mail: s.scuota@pg.izs.it

4. Istituto Zooprofilattico Sperimentale Umbria e Marche (sezione di Macerata)

Via dei Velini, 11 62100 Macerata

Referente: : Dott.ssa Monica Staffolani

Tel: 0733/262206; 347/7329160 Fax: 0733/262069

e-mail: m.staffolani@pg.izs.it

5. Istituto Zooprofilattico Sperimentale Lazio e Toscana

Via Appia Nuova, 1411 00178 Roma

Referente: Dott. Stefano Bilei

Microbiologia degli alimenti

Tel. 06/79099423 Fax 06/79340724

e-mail: sbilei@rm.izs.it

6. Istituto Zooprofilattico Sperimentale Abruzzo e Molise

Campo Boario, 64100 Teramo

Referente: Dott.ssa Elisabetta Di Giannatale

Reparto di Igiene delle Tecnologie Alimentari e dell'Alimentazione Animale

Tel. 0861/332259 Fax 0861/332251

e-mail: e.digiannatale@izs.it

7. Istituto Zooprofilattico Sperimentale del Mezzogiorno

Via Salute, 2 80055 Portici (Na)

Referente: : Dott.ssa. Maria Rosaria Carullo

Dipartimento di Ispezione degli Alimenti di Origine Animale

Tel. 081/7865213 Fax 081/7766495

e-mail: d.bove@izsm.portici.it

8. Istituto Zooprofilattico Sperimentale Puglia e Basilicata

Via Manfredonia, 20 71100 Foggia

Referente: : Dott.ssa Elisa Goffredo

Unità Operativa Batteriologia Alimentare

Tel. 0881 786319 Fax 0881/786374

e-mail: e.goffredo.izsfg@infinito.it

9. Istituto Zooprofilattico Sperimentale della Sicilia

Via Rocco Dicillo, 4 90129 Palermo

Referente: : Dott.ssa Chiara Piraino

Settore Diagnostica Specialistica - Laboratorio di Batteriologia Speciale

Tel. 091/6565301 Fax 091/6570803

e-mail: piraino@pa.izs.it

10. Istituto Zooprofilattico Sperimentale della Sardegna

Via Duca degli Abruzzi, 8 07100 Sassari

Referente: Dott. Antonio Vidili

Dipartimento Territoriale di Oristano

Laboratorio di Diagnostica Clinica e Anatomia Patologica

Via Atene-Zona Industriale 09170 Oristano

Tel. 0783/351003 Fax 0783/58931

e-mail: izsoristano@tin.it

Programma Enter-Vet 2002

Riepilogo annuale delle notifiche

Il sistema Enter-vet, che riguarda la raccolta di dati a livello nazionale sugli isolamenti di Salmonella spp. da campioni di origine veterinaria, è attivo dall'inizio del 2002, ed ha finora prodotto un riepilogo semestrale ed il presente riepilogo annuale. Abbiamo ritenuto opportuno presentare i dati relativi a tutto l'anno scorso, e non solamente al secondo semestre, per facilitare il confronto con altri sistemi, quali quelli attivi in diversi Paesi Europei, nonché la valutazione dell'andamento delle notifiche nei diversi anni. Per questo motivo è nostra intenzione proseguire d'ora in poi con la pubblicazione di report con cadenza annuale.

Ricordiamo che i nodi della rete Enter-Vet sono gli Istituti Zooprofilattici Sperimentali, con il coordinamento del Centro Nazionale di Referenza per le Salmonellosi. Gli Istituti inviano al Centro di Referenza i dati relativi alla tipizzazione dei ceppi di Salmonella attraverso un sistema informatizzato, assieme ad alcuni stipiti (in particolare i ceppi appartenenti ai sierotipi Enteritidis e Typhimurium) per la tipizzazione fagica. Tutti i dati vengono inviati dal Centro di Referenza all'Istituto Superiore di Sanità, che coordina a livello nazionale la rete Enter-net, attiva a livello europeo per gli isolamenti da campioni di origine umana ed alimentare.

Durante l'anno 2002, come presupposto essenziale per l'attività di un sistema di sorveglianza di questo tipo, sono stati eseguiti due test interlaboratorio di tipizzazione sierologica delle salmonelle, a cui hanno partecipato tutti i laboratori che inviano dati a Enter-Vet, e che verrà d'ora in poi ripetuto con cadenza annuale.

Durante l'anno 2002 sono stati inviati i dati relativi a 4550 ceppi tipizzati presso gli Istituti Zooprofilattici Sperimentali. Si definisce IZS di Riferimento il laboratorio che ha eseguito la tipizzazione sierologica, in considerazione del fatto che alcuni ceppi vengono tipizzati da laboratori diversi da quello territorialmente competente.

I dati riguardanti gli isolamenti di Salmonella divisi per IZS di riferimento e per regione di prelievo sono riassunti nella Tabella 1.

Tabella 1. Isolamenti di Salmonella suddivisi per IZS di riferimento e per regione di prelievo

Istituto Zooprofilattico sperimentale	Sede	Tipizzazioni per IZS di riferimento	Isolamenti per regione prelievo		
			Veneto	1.219	
Venezie	Legnaro	1.939	Friuli Venezia Giulia	58	
			Trentino Alto Adige	145	
Diamanta Limata a			Piemonte	151	
Piemonte, Liguria e Valle d'Aosta	Torino	13	Liguria	55	
valle u Austa			Valle d'aosta	0	
Lombardia ed Emilia- Romagna	Brescia	1.752	Emilia-Romagna	1.008	
Komagna			Lombardia	676	
Umbria e marche	Perugia	154	Umbria	152	
Ombria e marche	Macerata	98	Marche	113	
Lazio e Toscana	Roma	201	Toscana	72	
Lazio e i oscana	Noma	201	Lazio	127	
Abruzzo e molise	Teramo	177	Abruzzo	58	
ADIUZZO E IIIOIISE	Teramo	177	Molise	126	
Mezzogiorno	Portici	111	Calabria	27	
	1 Ortio		Campania	84	
Puglia e Basilicata	Foggia	78	Basilicata	15	
	i oggia	70	Puglia	85	
Sicilia	Palermo	27	Sicilia	6	
Sardegna	Sassari	0	Sardegna	5	
TOTALE		4.550		4.183*	

^{*} Il totale degli isolamenti per IZS di riferimento non coincide con il totale degli isolamenti per regione di prelievo perché, a causa di compilazione incompleta della maschera, per 367 isolamenti non è stato possibile risalire alla regione di prelievo.

La Tabella 2 riporta la distribuzione delle sottospecie di *Salmonella enterica* per tipo di campione (animale, alimento, ambiente e non noto), mentre in Tabella 3 è rappresentata la distribuzione dei sierotipi con frequenza di isolamento superiore a 40 nei medesimi campioni.

Nelle tabelle seguenti per n.t. si intende "non tipizzato" o "non tipizzabile".

Tabella 2. Distribuzione delle sottospecie di Salmonella enterica per tipo di campione

Campione	enterica	salamae	houtenae	diarizonae	arizonae	indica	n.t	totale
Animale	1.829	3	10	6			6	1.854
Alimento	2.303	18	2			1	7	2.331
Ambiente	277	5	1	1	1			285
Non noto	78	1					1	80
Totale	4.487	27	13	7	1	1	14	4.550

Tabella 3. Distribuzione dei sierotipi con frequenza superiore a 40 isolamenti

Sierotipo	Alimento	Animale	Ambiente	Non noto	Totale	Percentuale
Typhimurium	461	527	30	14	1.032	22,68
Derby	260	44	18	3	325	7,14
Hadar	138	146	11	7	302	6,64
Blockley	127	113	10	6	256	5,63
Heidelberg	119	92	5	1	217	4,77
Virchow	56	111	11	1	179	3,93
Anatum	131	42	4	1	178	3,91
Enteritidis	69	60	23		152	3,34
Bredeney	106	38	4	1	149	3,27
Livingstone	62	52	6	3	123	2,70
1,4,5,12:i:-	51	61	3	1	116	2,55
Infantis	78	17	7	5	107	2,35
Saintpaul	70	27	5		102	2,24
Agona	34	26	13	5	78	1,71
Gallinarum	3	64	5	3	75	1,65
London	55	5	3	2	65	1,43
Brandenburg	41	3	2		46	1,01
Eimsbuettel	20	14	10		44	0,97
Give	18	23	3		44	0,97
Kottbus	11	28	1	1	41	0,90
Thompson	17	18	6		41	0,90
Panama	34	3	3		40	0,88
Altro	333	286	96	24	739	16,24
n.t.	37	54	6	2	99	2,18
Totale	2.331	1.854	285	80	4.550	100

Come evidenziato in Tabella 3, il sierotipo più frequentemente isolato risulta essere S. Typhimurium (22,68 %) con 1032 isolamenti di cui 527 da animale e 461 da alimento. Altri sierotipi isolati con una frequenza elevata risultano essere S. Derby (7,14 %) e S. Hadar (6,64 %), rispettivamente con 44 isolamenti da animale e 260 da alimento e 146 da animale e 138 da alimento. S. Enteritidis è stata isolata nel 3.34 % dei casi, con 60 isolamenti da animale e 69 da alimento. E' da notare la non trascurabile frequenza di

isolamento di ceppi appartenenti al sierotipo 1,4,5,12:i:-, monofasico e non ancora denominato, che sembra essere particolarmente correlato, per quanto riguarda la fonte di isolamento, al suino e ai prodotti derivati (Tabelle 5 e 6). Tale sierotipo viene segnalato anche nell'uomo, ed è sicuramente da monitorare al fine di valutarne la tendenza nei prossimi anni.

La Tabella 4 riassume il numero di sierotipi isolati per specie animale.

Tabella 4. Numero e percentuale di ceppi isolati per specie animale

Specie	N.	%
Suino	1.292	28,40
Pollo	993	21,82
Tacchino	600	13,19
Bovino	205	4,51
Bovino/Suino	183	4,02
Piccione	90	1,98
Coniglio	80	1,76
Ovino	46	1,01
Faraona	38	0,84
Molluschi	37	0,81
Anatra	35	0,77
Equino	19	0,42
Quaglia	16	0,35
Bufalino	13	0,29
Caprino	2	0,04
Altro	544	11,96
Non noto	357	7,85
Totale	4.550	100

Le Tabelle 5, 6, 7 e 8 riportano la distribuzione dei sierotipi di *Salmonella* spp. isolati rispettivamente da animali, alimenti, ambiente e di origine non nota. Per quanto riguarda i ceppi isolati da animali e alimenti sono riportati solo i sierotipi con frequenza di isolamento superiore a 20, mentre per i ceppi isolati da ambiente e di origine non nota sono riportati solo i sierotipi con frequenza di isolamento superiore rispettivamente a 5 e a 2.

Tabella 5. Distribuzione dei sierotipi per specie animale isolati da animali con frequenza superiore a 20 isolamenti

Sierotipo	Pollo	Suino	Tacchino	Bovino	Piccione	Coniglio	Anatra	Faraona	Ovino	Quaglia	Bufalino	Equino	Molluschi	Caprino	Altro	Non noto	Totale
Typhimurium	38	175	42	49	82	57	10	4	2	10		2	2	2	48	4	527
Hadar	78		52	2			1				2				6	5	146
Blockley	20	1	59	5	1	6		2							18	1	113
Virchow	84		1	1		1		2				1			21		111
Heidelberg	29	1	55	1	1		1								4		92
Gallinarum	36		3		2			3		2					18		64
1,4,5,12:i:-	3	52	1	2							1				1	1	61
Enteritidis	36	1		1		7	1	1							13		60
Livingstone	37	7	3					1							3	1	52
Derby	1	33	8												2		44
Anatum	2	21	12	3			1	1				1			1		42
Bredeney	11	24	1				1	1									38
Kentucky	18														11		29
Kottbus	3	1	7				10	4							3		28
Saintpaul	5		13	1			4								4		27
Agona	3		15	1			1	1							5		26
Give	3	2		9							6				3		23
Altro	93	46	16	19	2	4	5	11	23	1	2	3	1		89	2	317
n.t.	4	3	2	7		1			6						30	1	54
Totale	504	367	290	101	88	76	35	31	31	13	11	7	3	2	280	15	1.854

Tabella 6. Distribuzione dei sierotipi per specie animale isolati da alimenti con frequenza superiore a 20 isolamenti

Sierotipo	Suino	Pollo	Tacchino	Bovino/Suino	Bovino	Molluschi	Ovino	Equino	Faraona	Coniglio	Quaglia	Bufalino	Piccione	Altro	Non noto	Totale
Typhimurium	270	12	27	38	25	5	12	5		2	1		1	29	34	461
Derby	175	3	10	23	14			1						18	16	260
Hadar	5	81	36	4	3									6	3	138
Anatum	53	1	31	19	8									10	9	131
Blockley	4	25	61	20	2	1				1				5	8	127
Hheidelberg	2	35	65	8	2									2	5	119
Bredeney	57	12	7	15	7	1					1			5	1	106
Infantis	32	14		12	2	3		1						12	2	78
Saintpaul	3	31	22	3	8									1	2	70
Enteritidis	3	47			5	1								9	4	69
Livingstone	21	28		4	1									7	1	62
Virchow		48	1	2	1	3								1		56
London	36		1	7	4			2						2	3	55
1,4,5,12:i:-	36		2	9	2										2	51
Brandenburg	34			2					2					2	1	41
Agona	11	4	5	2	1	2					1			1	7	34
Panama	26				1	1			1					1	4	34
Rissen	22													6	1	29
Goldcoast	10		1	3										7	3	24
Eimsbuettel	17	1													2	20
Senftenberg	1	4	1		3	2								8	1	20
Altro	89	74	21	12	13	13	1	2	2	1		1		33	47	309
n.t.	9	10			1	1	2	1						6	7	37
Totale	916	430	291	183	103	33	15	12	5	4	3	1	1	171	163	2.331

La Tabella 7 riporta i sierotipi isolati da campioni ambientali, che riguardano in massima parte prelievi eseguiti negli allevamenti o negli impianti di produzione e lavorazione degli alimenti.

Tabella 7. Distribuzione dei sierotipi per specie animale isolati da ambiente con frequenza maggiore di 5

Sierotipo	Pollo	Tacchino	Suino	Bufalino	Altro	Non noto	Totale
Typhimurium	2				2	26	30
Enteritidis	11				7	5	23
Derby			1		1	16	18
Agona						13	13
Hadar	2	1			2	6	11
Virchow	5				5	1	11
Blockley	1				4	5	10
Eimsbuettel	7					3	10
Muenchen						10	10
Java					5	3	8
Infantis	2				2	3	7
Altona	6						6
Livingstone	3					3	6
Manhattan						6	6
Thompson					2	4	6
Corvallis						5	5
Gallinarum					5		5
Heidelberg		1			2	2	5
Saintpaul					1	4	5
Sofia						5	5
Zaiman						5	5
Altro	8		1	1	15	49	74
n.t.	1				2	3	6
Totale	48	2	2	1	55	177	285

Tabella 8. Distribuzione dei sierotipi per specie animale con tipo di campione non noto con frequenza maggiore di 2

Sierotipo	Tacchino	Pollo	Suino	Faraona	Molluschi	Piccione	Bovino	Non noto	Altro	Totale
Typhimurium	4		2			1	1		6	14
Hadar	5	2								7
Blockley	4	1							1	6
Agona				1					4	5
Infantis		1							4	5
Brancaster									4	4
Cerro									3	3
Derby	1		1						1	3
Gallinarum					1				2	3
Livingstone		1	1					1		3
Bareilly									2	2
London			1						1	2
Muenchen		1						1		2
Paratyphi b									2	2
Altro	3	5	2	1					6	17
n.t.							-		2	2
Totale	17	11	7	2	1	1	1	2	38	80

Le Tabelle 9, 10 ,11 e 12 riportano la distribuzione dei sierotipi più frequentemente isolati rispettivamente nel pollo, nel tacchino, nel bovino e nel suino.

Tabella 9. Distribuzione nel pollo dei sierotipi più frequentemente isolati

Sierotipo	Frequenze
Hadar	163
Virchow	137
Enteritidis	94
Livingstone	69
Heidelberg	64
Typhimurium	52
Blockley	47
Gallinarum	37
Saintpaul	36
Infantis	27
Bredeney	24
Thompson	20
Kentucky	20
Eimsbuettel	20
Altro	183
Totale	993

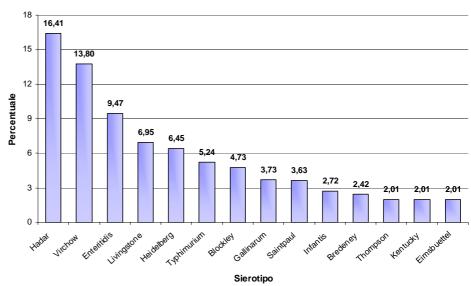


Tabella 10. Distribuzione nel tacchino dei sierotipi più frequentemente isolati

Sierotipo	Frequenza
Blockley	124
Heidelberg	122
Hadar	94
Typhimurium	73
Anatum	43
Saintpaul	35
Agona	20
Derby	19
Kottbus	11
Bredeney	8
Corvallis	5
Altro	46
Totale	600

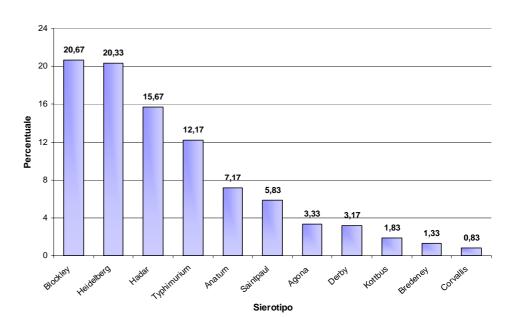


Tabella 11. Distribuzione nel bovino dei sierotipi più frequentemente isolati

Sierotipo	Frequenze
Typhimurium	75
Derby	14
Dublin	12
Anatum	11
Give	9
Saintpaul	9
Blockley	7
Bredeney	7
Enteritidis	6
Hadar	5
London	5
Altro	45
Totale	205

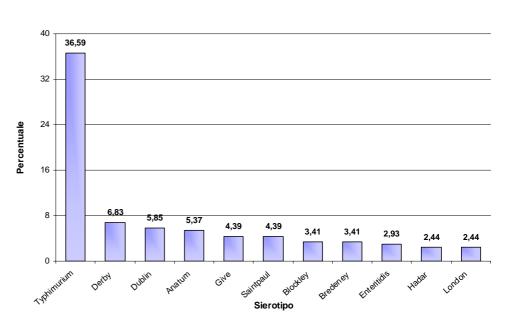
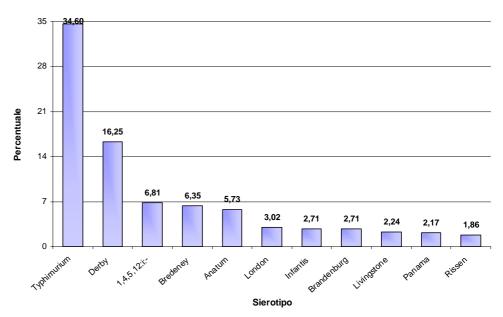



Tabella 12. Distribuzione nel suino dei sierotipi più frequentemente isolati

Sierotipo	Frequenze
Typhimurium	447
Derby	210
1,4,5,12:i:-	88
Bredeney	82
Anatum	74
London	39
Infantis	35
Brandenburg	35
Livingstone	29
Panama	28
Rissen	24
Altro	201
Totale	1.292

Fagotipizzazione: risultati

Le Tabelle 13 e 14 illustrano la distribuzione per specie dei fagotipi di S. Typhimurium e S. Enteritidis.

Per quanto riguarda S: Typhimurium (Tabella 13) il fagotipo più frequente è DT 104, seguito da U 302 e da DT 12. E' da notare l'elevata frequenza, in ceppi di S.Typhimurium isolati da suino, di esiti "NT" (non tipizzabile). Questo rilievo potrebbe far pensare ad un nuovo fagotipo emergente in questa specie animale, per l'identificazione del quale il pannello di fagi attualmente disponibile risulti insufficiente. Alcuni di questi ceppi sono stati inviati al PHLS di Colindale (Londra) per ulteriori indagini, dei cui risultati daremo comunicazione appena disponibili.

La Tabella 14 mostra come il fagotipo più rappresentato in S. Enteritidis risulti essere PT 4, seguito da PT 14B e da PT 1A. E' da segnalare l'elevata frequenza del fagotipo 14B, recentemente implicato in episodi di tossinfezione alimentare in Gran Bretagna, in cui la fonte di infezione è stata identificata in uova provenienti dalla Spagna.

Tabella 13. Distribuzione dei fagotipi di S. Typhimurium per specie

	Suino	Tacchino	Piccione	Bovino	Pollo	Coniglio	Bovino-Suino	Anatra	Quaglia	Equino	Faraona	Bufalino	Ovino	Altro	Non noto	Totale
NT	91	9	2	11	7	2	8		2					9	38	179
RDNC*	36	11	39	5	10	8	4	1					1	7	28	150
DT104	47	20	9	22	11	7	1			4	1	2	1	3	15	143
U302	40	2		7	2	6	1	1	3					3	11	76
DT12	20	10		9	1	3	4				1			6	7	61
DT208	34		1	4	1		1							2	9	52
DT194	7		1	2	1	3	1	1	3					3	3	25
DT120	11		3	2		1		1						1	4	23
DT7VAR	5	4		1	1		3									14
DT104B	8			1			1			1				1	1	13
DT2		7	1		1	1		2								12
Altro	21	7	10	4	8	5	1	8	1	1	2	1	1	14	17	101
Totale	320	70	66	68	43	36	25	14	9	6	4	3	3	49	133	849

*RDNC: lettura stabile non identificata

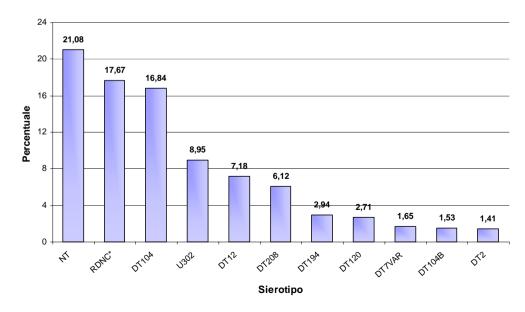



Tabella 14. Distribuzione dei fagotipi di S. Enteritidis per specie

	Pollo	Coniglio	Suino	Bovino	Bufalino	Faraona	Anatra	Altro	Non noto	Totale
PT4	22	1	2			1	1	1	7	35
PT14B	17	1							5	23
NT	6		1					1	3	11
PT1A	7								1	8
PT1	3			2					1	6
PT1B	1		1						4	6
PT32A	3								1	4
PT 2	1							1	1	3
PT21C			1						2	3
PT8	3									3
Altro	8	3		1	1			1	2	16
Totale	71	5	5	3	1	1	1	4	27	118

Antibiogrammi: risultati

I dati riguardanti l'antibioticoresistenza sono riportati nelle Tabelle 15,16,17 e 18.

Tabella 15. Percentuale dei ceppi sensibili, intermedi e resistenti

	1	I		
	N.*	S (%)	I (%)	R (%)
CL	2.703	97,7	1,7	0,6
SXT	2.838	87,8	2,6	9,6
K	2.799	85,9	0,9	13,3
GM	2.832	96,9	0,9	2,2
N	2.454	84,1	2,4	13,5
СТХ	2.833	98,5	1,1	0,4
AMC	2.794	84,9	12,2	2,9
NA	2.841	69,8	2,4	27,8
TE	2.843	37,8	9,3	53,0
AM	2.814	60,4	0,6	38,9
S	2.840	45,0	12,9	42,1
S-3	2.684	31,4	13,0	55,6
С	2.838	86,4	0,6	13,0
CF	2.713	89,2	4,4	6,5
ENR	2.754	84,4	13,6	2,0
CIP	2.840	99,6	0,3	0,1

Legenda	
CL	Colistina
SXT	Sulfametoxazolo-Trimetoprim
K	Kanamicina
GM	Gentamicina
N	Neomicina
CTX	Cefotaxime
AMC	Amoxicillina
NA	Acido nalidixico
TE	Tetraciclina
AM	Ampicillina
S	Streptomicina
S-3	Trisulfamidico (sulfonamidi)
С	Cloramfenicolo
CF	Cefalotina
ENR	Enrofloxacin
CIP	Ciprofloxacin

Dalla tabella si evince come sia elevata la percentuale di ceppi resistenti a tetraciclina (53,0), ampicillina (38,9), streptomicina (42,1), sulfamidici (55,6) e cloramfenicolo (13,0). Tali resistenze sono dovute alla presenza di S. Typhimurium DT 104, che presenta appunto il tipico profilo di resistenza ACSSuT. Risulta inoltre frequente la resistenza alla kanamicina (13,3) e alla neomicina (13,5), in genere associata a S. Blockley. Da notare, infine, il 27,8 % di ceppi resistenti all'acido nalidixico, il 9,6 % al sulfametoxazolo-trimetoprim ed il 13,0 % alla cefalotina.

Le tabelle 16 e 17 riportano il dettaglio delle resistenze distribuite per sierotipo e per specie animale.

^{*:} Numero di ceppi testati

Tabella 16. Percentuali di resistenza nei sierotipi isolati con frequenza superiore a 40 isolamenti

	CL	SXT	K	GM	N	СТХ	AMC	NA	TE	AM	S	S3	С	CF	ENR	CIP
Agona	2,63	25,00	25,00		29,41			45,00	35,00	10,00		40,54			5,13	
Anatum		28,57	45,63	2,88	45,10			7,62	85,71	37,86	20,00	53,00	4,76	2,94	0,98	
Blockley		0,59	77,25	1,18	78,13			77,65	85,88	2,94	81,18	62,20	10,00	0,61	3,05	
Brandenburg	5,26	5,26	5,26	5,26	13,33				52,63	5,26	15,79	22,22		5,26		<u> </u>
Bredeney		28,57	81,08	4,00	76,47			12,99	84,42	22,08	83,12	88,89	14,47	1,37		
Derby	0,82	12,40	9,88	0,78	8,56	0,39	1,59	5,43	66,41	6,85	45,74	61,34	0,78	2,86		<u> </u>
Enteritidis		3,08	5,38	1,54				6,92	3,05	6,35	13,74	30,23		7,75	1,54	
Gallinarum								13,51			8,11	77,14				
Give									16,67			33,33				
Hadar	1,01	1,97	4,00		4,00	2,46	6,44	94,58	92,61	83,25	83,74	34,52	1,48	52,79	11,17	
Heidelberg		1,46	5,84	0,74	10,00		0,74	63,50	64,96	91,97	63,50	53,03		3,79		
Infantis	1,85		1,82		1,92	1,79		3,57	7,14	5,36	3,57	57,41	1,79			
Kottbus		4,00		4,00				96,00	64,00	56,00	4,00	40,00		32,00	8,00	
Livingstone											1,30	18,92				
London		29,17	4,17		5,00				25,00	8,33	8,33	79,17	8,33			
Panama		21,43						7,14	21,43	21,43	21,43	53,85	21,43			
Saintpaul		22,54	17,65	11,27	14,52			9,86	36,62	32,39	23,94	66,13	2,82	5,97		
Thompson	4,17	28,00	12,00		15,00		4,00	16,00	28,00	16,00	16,00	58,33				
Typhimurium	0,39	11,51	4,75	2,97	4,69	0,25	6,79	13,84	68,77	61,15	56,01	69,79	36,09	2,73	1,40	0,37
Virchow		1,42	0,71		2,92		0,71	92,20	4,29	63,83	2,13	63,04	1,43	0,72	1,42	
1,4,5,12:i:-		22,73	4,55	18,18	4,55			4,55	63,64	86,36	72,73	86,36	13,64			
Altro	1,24	6,73	4,34	0,58	3,00	1,35	3,75	41,27	50,67	41,46	43,57	33,74	5,38	22,81	5,03	
n.t.	1,41	2,63	6,76	7,89	3,33		1,37	14,47	14,47	21,05	18,42	46,38	2,63	1,39	5,56	

Tabella 17. Percentuali di resistenza nei sierotipi isolati nelle diverse specie animali

	CL	SXT	K	GM	N	СТХ	AMC	NA	TE	AM	S	S 3	С	CF	ENR	CIP
Pollo	0,61	4,61	6,55	0,75	6,67	0,89	1,796	42,56	30,51	43,58	28,53	48,69	3,88	11,28	2,71	
Equino		7,69	7,69	7,69	10,00			15,38	53,85	38,46	53,85	83,33	38,46			
Bufalino									100	100	100	100				
Anatra		17,24	6,90	3,45	7,69			37,93	51,72	51,72	10,34	59,26	6,90	22,22		
Bovino/Suino		11,24	25,84	1,12	23,60		5,618	11,36	66,29	30,59	50,56	69,66	10,11	2,30	1,12	
Coniglio		7,35	13,24	8,96	9,23			33,82	63,24	41,79	54,41	64,62	45,59			
Molluschi	4,55	4,35	4,35				4,348	8,696	26,09	17,39	13,04	31,82	13,04			
Tacchino	0,49	9,22	42,16	4,28	42,86	0,24	1,456	66,75	82,78	46,57	69,10	52,26	12,74	13,10	5,01	
Faraona		4,17	8,33	4,17	4,35			33,33	33,33	25,00	20,83	43,48	8,33			
Piccione		2,90	2,90	1,43			1,449	2,857	17,14	8,57	11,43	13,11	7,14	1,56	1,47	
Quaglia									85,71	85,71	71,43	85,71	71,43			
Bovino	0,78	8,15	10,61	0,74	8,80		4,545	22,96	62,22	42,96	47,41	72,09	26,67	3,10	0,75	
Suino	0,70	18,06	8,28	1,86	7,85	0,40	4,521	6,49	71,13	42,74	51,00	67,68	18,75	2,95	0,56	0,27
Ovino							2,632		2,50	2,50	25,00	24,32	2,50			
Caprino		50,00		50,00					100	100	50,00	100	50,00			
Altro	0,54	5,04	7,85	1,77	7,65		2,273	19,14	28,72	23,62	23,93	48,55	8,82	2,88	2,03	
Non noto	1,15	10,64	9,78	4,26	9,33	1,08	7,527	7,527	58,51	44,44	45,74	53,33	14,89	4,49	1,11	1,06

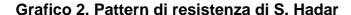
Analisi della multiresistenza

I risultati degli antibiogrammi sono stati elaborati al fine di evidenziare la presenza e le caratteristiche dei ceppi multiresistenti. Si considera tale un isolato che presenti resistenza a quattro o più antibiotici contemporaneamente fra quelli testati.

Tabella 18. Distribuzione delle multiresistenze per sierotipo

				Totale ceppi	%**						
Sierotipo	N°*	4	5	6	7	8	9	10	11	multiresistenti	%^^
Typhimurium	641	111	143	82	17	17	2	3	3	378	58,97
Hadar	173	40	49	32	17	1	2			141	81,50
Blockley	155	4	46	64	12					126	81,29
Heidelberg	127	49	22	6	2					79	62,20
Bredeney	63	7	26	3	7	11	1			55	87,30
Anatum	96	30	6	2	2	3	1			44	45,83
Derby	197	13	19	1						33	16,75
Saintpaul	57	6	2	1	4	2	2			17	29,82
1,4,5,12:i:-	22	7	4	2		1				14	63,64
Kottbus	25	10	1		1					12	48,00
Agona	33	1	3	5						9	27,27
Virchow	135	6	3							9	6,67
Brancaster	4				1	3				4	100,00
Corvallis	4			2	2					4	100,00
Enteritidis	116	4								4	3,45
Indiana	12		2	2						4	33,33
Thompson	20	1	3							4	20,00
Bovismorbificans	4	3								3	75,00
Panama	10			3						3	30,00
Brandenburg	14			2						2	14,29
Infantis	51	1				1				2	3,92
London	19	1	1							2	10,53
Meleagridis	4	2								2	50,00
Tennessee	3	1	1							2	66,67
Altona	3			1						1	33,33
Goldcoast	5		1							1	20,00
Haifa	1		1							1	100,00
Mbandaka	14	1								1	7,14
Paratyphi b	4		1							1	25,00
Singapore	1	1								1	100,00
Non noto	57	5	2	1	1	1				10	17,54
Totale	2.070	304	336	209	66	40	8	3	3	969	46,81

^{*:} Numero di ceppi sottoposti ad antibiogramma completo


^{*:*} Percentuale di ceppi multiresistenti calcolata sul totale di ceppi sottoposti ad antibiogramma completo

Come ricordato precedentemente, per quanto riguarda S. Typhimurium bisogna sottolineare l' elevato numero di ceppi resistenti a tetraciclina, ampicillina, streptomicina, trisulfamidico e cloramfenicolo, come evidenziato anche nel Grafico 1. Questo è da riferire alla presenza del fagotipo DT 104 il cui tipico pattern di resistenza è dato appunto dall'associazione di questi cinque antimicrobici. Abbastanza frequente è inoltre il riscontro dello stesso pattern associato alla resistenza all'acido nalidixico.

La frequenza numerica dei pattern di resistenza di S. Typhimurium, S. Blockley, S. Hadar e S. Heidelberg è raffigurata nei Grafici 1, 2, 3 e 4.

25,40 24 Percentuale 18 12 8,99 6 2,65 2,38 1,32 1,06 1,06 1,06 am.c.s.s3.te.amc. am.c.s.s3.te.sxt. na.am.c.s.s3.te.amc. na.am.c.s.s3.te. na.am.c.n.K.s.s3.te. am.c.s3te.amc. na.am.s.s3.te. am.s.s3.te.d. am.c.s.s3.te. am.s.s3.te. am.s3.te.sxt. am.c.s3.te. Pattern di resistenza

Grafico 1. Pattern di resistenza di S. Typhimurium

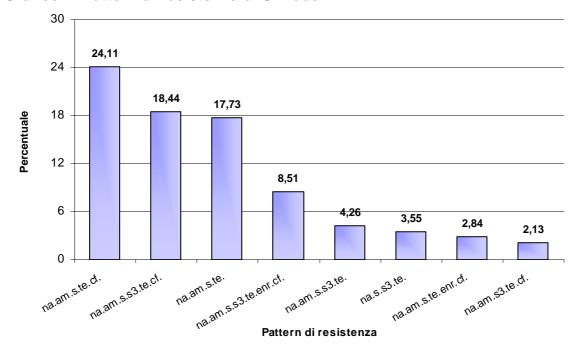


Grafico 3. Pattern di resistenza di S. Blockley

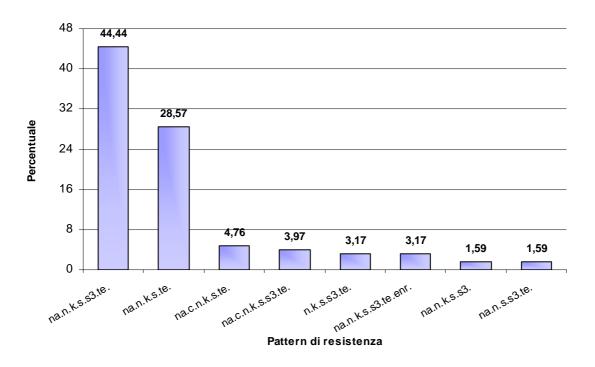
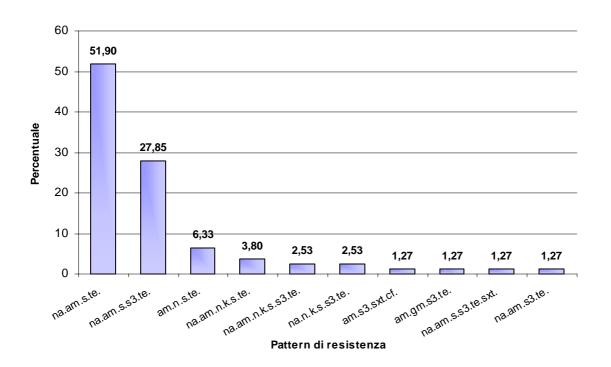



Grafico 4. Pattern di resistenza di S. Heidelberg

Conclusioni

La produzione di un report con valenza nazionale rappresenta il raggiungimento di un importante obiettivo per questo sistema di sorveglianza che, nonostante sia di recente istituzione, ha portato ad ottimi risultati, grazie alla collaborazione di tutti i centri partecipanti.

L'esecuzione dei circuiti interlaboratorio sulla tipizzazione sierologica delle salmonelle ha permesso la verifica dell'attività dei laboratori dei diversi Istituti Zooprofilattici, ed il riconoscimento degli eventuali problemi per quei centri che hanno ottenuto risultati non soddisfacenti. La seconda prova eseguita ha portato a risultati migliori rispetto alla prima, e siamo certi che nei prossimi test le performance dei laboratori andranno migliorando, stante comunque il buon livello già ora raggiunto.

L'attività della rete Enter-vet dipende in egual misura dalle azioni intraprese dal Centro di Referenza e dall'attiva partecipazione di tutti i laboratori, a cui chiediamo di segnalarci qualsiasi problema o richiesta, in modo che il sistema possa rispondere in modo efficiente alle diverse esigenze dei partecipanti.

Chiediamo infine anche a coloro che non partecipano alla rete Enter-vet, ma ritengono utile la produzione di questo tipo di report, di indicarci qualsiasi modifica possa portare ad un miglioramento di questo riepilogo o dell'attività svolta.

Lo staff del Centro Nazionale di Referenza per le Salmonellosi